美丽乡村地埋式生活污水处理系统
生产日处理量1-500吨一体化污水处理设备,气浮机、二氧化氯发生器、加药装置、叠螺机、压滤机、机械格栅、一体化泵站等污水设备。
可找我们询价、出方案、出技术图纸、现场指导施工,买我们设备送货到您现场,派技术安装、培训。
传统a2/o工艺
a2/o工艺是一种典型的除磷脱氮工艺,其生物反应池由厌氧、缺氧、和好氧三段组成,其特点是厌氧、缺氧和好氧三段功能明确,界线分明,可根据进水条件和出水要求,人为地创造和控制三段的时空比例和运转条件,只要碳源充足,便可根据需要达到比较高脱氮效率。
传统a2/o工艺存在在以下两个缺点:①由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响;②由于缺氧区位于系统中部,反硝化在碳源分配上居于不利地位,因而影响了系统的脱氮效果。
2)改良a2/o工艺
为了解决a2/o工艺的第yi个缺点,即由于厌氧区居前,回流污泥中的硝酸盐对厌氧区产生不利影响,改良a2/o工艺在厌氧池之前增设缺氧调节池。
来自二沉池的回流污泥和10%左右的进水进入缺氧调节池,停留时间为20~30min,微生物利用约10%进水中有机物去除回流硝态氮,消除硝态氮对厌氧池的不利影响,从而保证厌氧池的稳定性,保证除磷效果。
3)uct工艺
uct工艺与a2/o工艺的区别在于,回流污泥首先进入缺氧段,而缺氧段部分出流混合液再回至厌氧段。通过这样的修正,可以避免因回流污泥中的no3-n回流至厌氧段,干扰磷的厌氧释放,而降低磷的去除率。回流污泥带回的no3-n将在缺氧段中被反硝化。
4)倒置a2/o工艺
为了克服上述各工艺过程的缺点,产生了倒置a2/o工艺。为避免传统a2/o工艺回流硝酸盐对厌氧池放磷的影响,通过吸收改良a2/o工艺优点,将缺氧池置于厌氧池前面,来自二沉池的回流污泥和30~50%的进水,50~150%的混合液回流均进入缺氧段,停留时间为1~3h。回流污泥和混合液在缺氧池内进行反硝化,去除硝态氧,再进入厌氧段,保证了厌氧池的厌氧状态,强化除磷效果。由于污泥回流至缺氧段,缺氧段污泥浓度较好氧段高出50%。单位池容的反硝化速率明显提高,反硝化作用能够得到有效保证。
a-a-o生物脱氮除磷工艺是活性污泥工艺,在进行去除bod、cod、ss的同时可生物脱氮除磷。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除bod5的作用,但bod5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,bod5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,tp浓度逐渐升高,至缺氧段升至zui高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,tp保持稳定。在好氧段,由于聚磷菌的吸收,tp迅速降低。在厌氧段和缺氧段,nh3-n浓度稳中有降,至好氧段,随着硝化的进行,nh3-n逐渐降低。
在缺氧段,由于内回流带入大量no3-n,no3-n瞬间升高,但随着反硝化的进行,no3-n浓度迅速降低。在好氧段,随着硝化的进行,no3-n浓度逐渐升高。
a-a-o脱氮除磷系统的工艺参数及控制
a-a-o生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除bod5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是a-a-o系统工艺系统控制较复杂的主要原因。
1.f/m和srt。完全生物硝化,是高效生物脱氮的前提。因而,f/m(污泥负荷)越低,srt(污泥龄)越高。脱氮效率越高,而生物除磷则要求高f/m低srt。a-a-o生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,f/m一般应控制在0.1-0.18㎏bod5/(kgmlvss˙d),srt一般应控制在8-15d。
2.水力停留时间。水力停留时间与进水浓度、温度等因素有关。厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间1.5-2.0h,好氧段水力停留时间一般应在6h。
3.内回流与外回流。内回流比r一般在200-500%之间,具体取决于进水tkn浓度,以及所要求的脱氮效率。一般认为,300-500%时脱氮效率zui佳。内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。
4.溶解氧(do)。厌氧段do应控制在0.2mg/l以下,缺氧段do应控制在0.5mg/l以下,而好氧do应控制在2-3mg/l之间。因生物除磷本身并不消耗氧,所以a-a-o脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
5.bod5/tkn与bod5/tp。对于生物脱氮来说,bod5/tkn至少应大于4.0,而生物除磷则要求bod5/tp﹥20。运行中应定期核算入流污水水质是否满足bod5/tkn﹥4.0,bod5/tp﹥20。如果其中之一不满足,则应投加有机物补充碳源。为了提高bod5/tkn值,宜投加甲醇做补充碳源。为了提高bod5/tp值,则宜投加乙酸等低级脂肪酸。
6.ph控制及碱度核算。a-a-o生物除磷脱氮系统中,污泥混合液的ph应控制在7.0之上;如果ph﹤6.5,应外加石灰,补充碱度不足。
美丽乡村地埋式生活污水处理系统一般a2/o工艺流程当脱氮效果好时,则除磷效果较差,反之亦然,很难同时获得好的脱氮除磷的效果。所以特对a2/o工艺提出改进措施,以提高该工艺的整体处理效果。
① 在设计和运行中,保证污泥回流比为(60~100)%。一般回流到厌氧段的污泥回流比为(10~20)%,其余的则回流到缺氧段。这样就减少了进入到厌氧段的硝酸盐和溶解氧量,最大限度地维持了其厌氧环境,同时又保证了所需的污泥浓度。
② 原污水应能同时进入到厌氧段和缺氧段。根据脱氮除磷生化反应对有机碳源的需要,通过闸门调节其进入厌氧段和缺氧段的污水流量。有关研究表明,如要获得较高的脱氮除磷效果,可按1/3污水流入缺氧段来设计。
③ 回流污泥的提升用潜污泵代替螺旋泵,同时回流污泥和污水进入厌氧段和缺氧段均采用淹没式入流,以减少复氧。
④ 厌氧段和缺氧段水下搅拌器的功率一般按3~5 w/m3来设计。过大则会在池内产生涡流,导致混合液溶解氧升高,影响脱氮除磷效果;但搅拌功率过小则混合液中的污泥可能沉积下来。
⑤ 取消消化池,将剩余污泥直接经浓缩压滤成泥饼后作肥料使用,这样避免了a2/o工艺高磷剩余污泥在消化过程中磷被重新释放和溶出,影响磷的去除效果。
⑥ a2/o工艺的污泥龄取值应兼顾脱氮除磷二方面的要求,一般污泥龄为15~20 d为宜。
⑦ 混合液回流比的取值应兼顾a2/o工艺脱氮率要求较高和降低运行费用二个方面,一般取(300~400)%为宜,此时脱氮率可达70%以上,运行费用也不会太高。如果将缺氧池和好氧池设计成同心圆式,外圆为环形好氧池,采用转刷曝气推流;同心圆的中间是圆形缺氧反硝化池,用潜水搅拌器搅拌推流。从厌氧段出来的混合液通过缺氧池圆形隔墙上的开口进入好氧段,而好氧段混合液则通过隔墙上的旋转门回流到缺氧段,混合液的回流量由控制旋转门的开启度来调节,使回流混合液不需用泵提升,大大节约了能耗,又保证了较高的脱氮率。我国昆明第二污水厂就是采用该种结构,效果良好。
⑧ a2/o工艺设计中,要取得较好的处理效果和比较灵活的运行条件,一般采用设计参数:厌氧段污泥负荷率>0.10 kgbod5/kgmlss·d;厌氧段进水s-p/s-bod5<0.06;缺氧段c/n>6;好氧段污泥负荷率<0.10 kgbod5/kgmlss·d;好氧段tkn/mlss<0.15 kgtkn/kgmlss·d。
a/o法即为缺氧/好氧生化处理法,是国外20世纪七十年代末开发出来的一种污水处理新工艺,它不仅能去除污水中的bod5、codcr而且能有效的除氮。
a段池又称为缺氧池,或水解池。水解的机理从化学的角度来说,绝大多数化合物在一定条件下与水接触都会发生水解反应,水解反应可使共价键发生变化和断裂,即化合物在分子结构和形态上发生了变化。生物水解是靠生物酶的催化作用而加速反应的,在有酶条件下的催化反应速度要比无酶条件下高出108-1011倍。生物水解就是指复杂的有机物分子经加水在缺氧条件下,由于水解酶的参与被分解成简单的化合物的反应,生物水解反应实际上包括了水解和酸化两个过程,酸化可使有机物降解为有机酸。
另外a/o工艺还有很好的脱氮功能。污水在进入a段后再进入o段,污水在好氧段,有机物(bod5)被好氧微生物氧化分解,有机氮通过氨化作用和硝化作用转化为硝态氨,硝态氨通过污泥回流进入缺氧段,污水经缺氧段时,活性污泥中的反硝细菌利用硝态氮和污水中的codcr进行反硝化用,使硝态氮转化为分子态氮而逸入空气中而得到有效的去除,达到同时去除bod5和脱氮的很好效果。
a/o工艺具有如下优点:
①a段工艺污水中的大分子、难降解的有机物,可变成小分子有机物,可以开环开链、可提高bod5/codcr比值,从而提高了污水的可生化性能;
②同时还可完成反硝化反应,硝态氮中的氧为氧化分解污水中有机物提供了氧,使a/o流程的bod5去除率远比普通活性污泥法高;
③耐冲击落,出水稳定;
④a/o法工艺流程短,运行管理简单。
因此,本工程选用a/o法工艺。
潍坊鲁盛水处理设备有限公司